Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of a Deep Acceptor Level in ZnO Due to Silver Doping

Identifieur interne : 003F74 ( Main/Repository ); précédent : 003F73; suivant : 003F75

Identification of a Deep Acceptor Level in ZnO Due to Silver Doping

Auteurs : RBID : Pascal:10-0397983

Descripteurs français

English descriptors

Abstract

There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between 1018 cm-3 and 1020 cm-3, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0397983

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Identification of a Deep Acceptor Level in ZnO Due to Silver Doping</title>
<author>
<name sortKey="Chai, J" uniqKey="Chai J">J. Chai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mendelsberg, R J" uniqKey="Mendelsberg R">R. J. Mendelsberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics and Astronomy, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reeves, R J" uniqKey="Reeves R">R. J. Reeves</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics and Astronomy, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kennedy, J" uniqKey="Kennedy J">J. Kennedy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>GNS Science</s1>
<s2>Lower Hutt</s2>
<s3>NZL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>GNS Science</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Von Wenckstern, H" uniqKey="Von Wenckstern H">H. Von Wenckstern</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Institut für Experimentelle Physik II, Universität Leipzig</s1>
<s2>Leipzig</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, M" uniqKey="Schmidt M">M. Schmidt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Institut für Experimentelle Physik II, Universität Leipzig</s1>
<s2>Leipzig</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grundmann, M" uniqKey="Grundmann M">M. Grundmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Institut für Experimentelle Physik II, Universität Leipzig</s1>
<s2>Leipzig</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doyle, K" uniqKey="Doyle K">K. Doyle</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics, West Virginia University</s1>
<s2>Morgantown, WV</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Morgantown, WV</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Myers, T H" uniqKey="Myers T">T. H. Myers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Materials Science and Engineering Program, Texas State University</s1>
<s2>San Marcos, TX</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Marcos, TX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Durbin, S M" uniqKey="Durbin S">S. M. Durbin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Christchurch</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>The MacDiarmid Institute for Advanced Materials and Nanotechnology</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0397983</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0397983 INIST</idno>
<idno type="RBID">Pascal:10-0397983</idno>
<idno type="wicri:Area/Main/Corpus">003F78</idno>
<idno type="wicri:Area/Main/Repository">003F74</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptor center</term>
<term>Bound exciton</term>
<term>Capacitance measurement</term>
<term>Charge compensation</term>
<term>Deep energy levels</term>
<term>Deep level</term>
<term>Defect states</term>
<term>Donor center</term>
<term>Electrical conductivity</term>
<term>Electronic structure</term>
<term>Hall effect</term>
<term>Indium additions</term>
<term>Ion beams</term>
<term>Magnetic field effects</term>
<term>Molecular beam epitaxy</term>
<term>Photoluminescence</term>
<term>Plasma assisted processing</term>
<term>Silver</term>
<term>Silver additions</term>
<term>Transients</term>
<term>Valence bands</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Niveau profond</term>
<term>Niveau énergie profond</term>
<term>Etat défaut</term>
<term>Centre accepteur</term>
<term>Addition indium</term>
<term>Argent</term>
<term>Traitement par plasma</term>
<term>Epitaxie jet moléculaire</term>
<term>Faisceau ion</term>
<term>Effet champ magnétique</term>
<term>Effet Hall</term>
<term>Photoluminescence</term>
<term>Centre donneur</term>
<term>Exciton lié</term>
<term>Oxyde de zinc</term>
<term>Phénomène transitoire</term>
<term>Mesure capacité électrique</term>
<term>Bande valence</term>
<term>Structure électronique</term>
<term>Compensation charge</term>
<term>Conductivité électrique</term>
<term>Addition argent</term>
<term>ZnO</term>
<term>5277</term>
<term>8115H</term>
<term>7855</term>
<term>7320A</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between
<sup>1018</sup>
cm
<sup>-3 </sup>
and 10
<sup>20</sup>
cm
<sup>-3</sup>
, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>39</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Identification of a Deep Acceptor Level in ZnO Due to Silver Doping</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Group III Nitrides, Silicon Carbide, and Zinc Oxide</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHAI (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MENDELSBERG (R. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>REEVES (R. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KENNEDY (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VON WENCKSTERN (H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SCHMIDT (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GRUNDMANN (M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DOYLE (K.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MYERS (T. H.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>DURBIN (S. M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>STAHLBUSH (Robert)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PHILLIPS (Jamie)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>XING (Grace)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics and Astronomy, University of Canterbury</s1>
<s2>Christchurch</s2>
<s3>NZL</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>GNS Science</s1>
<s2>Lower Hutt</s2>
<s3>NZL</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institut für Experimentelle Physik II, Universität Leipzig</s1>
<s2>Leipzig</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physics, West Virginia University</s1>
<s2>Morgantown, WV</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Materials Science and Engineering Program, Texas State University</s1>
<s2>San Marcos, TX</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>The MacDiarmid Institute for Advanced Materials and Nanotechnology</s1>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Naval Research Laboratory</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Notre Dame</s1>
<s2>Notre Dame, IN</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>577-583</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000180748650200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0397983</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>There remains considerable interest in the behavior of acceptors in ZnO, the ultimate goal being the realization of device grade p-type material. Silver is a candidate acceptor, and, in this study, in situ doping of silver was performed during plasma-assisted molecular beam epitaxy. Silver concentrations, as determined by ion beam analysis, ranged between
<sup>1018</sup>
cm
<sup>-3 </sup>
and 10
<sup>20</sup>
cm
<sup>-3</sup>
, with as much as 94% incorporated substitutionally on Zn lattice sites. Variable magnetic field Hall effect measurements detected no evidence of holes, and 4 K photoluminescence was dominated by donor bound excitons. Transient capacitance measurements, however, suggested that incorporated silver had led to the formation of an acceptor, located approximately 320 meV above the valence band edge, indicating that compensation remains a significant issue in determining the conductivity of ZnO.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B50B77</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Niveau profond</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Deep level</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Nivel profundo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Niveau énergie profond</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Deep energy levels</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Centre accepteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Acceptor center</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Centro aceptor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Traitement par plasma</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Plasma assisted processing</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Faisceau ion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ion beams</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Exciton lié</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Bound exciton</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Excitón ligado</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Transients</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Mesure capacité électrique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Capacitance measurement</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Compensation charge</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Charge compensation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Addition argent</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Silver additions</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>5277</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>256</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003F74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0397983
   |texte=   Identification of a Deep Acceptor Level in ZnO Due to Silver Doping
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024